
Ἶ� � Troubleshooting

Troubleshooting

Since this information may be updated regularly, please ensure you are viewing the

most up-to-date version.

ImportError
In certain cases a failed installation or setup issue can cause you to see the following error

message:

IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!

Importing the numpy c‐extensions failed. This error can happen for
different reasons, often due to issues with your setup.

The error also has additional information to help you troubleshoot:

Your Python version

Your NumPy version

Please check both of these carefully to see if they are what you expect. You may need to

check your PATH or PYTHONPATH environment variables (see Check Environment Variables

below).

The following sections list commonly reported issues depending on your setup. If you have

an issue/solution that you think should appear please open a NumPy issue so that it will be

added.

There are a few commonly reported issues depending on your system/setup. If none of the

following tips help you, please be sure to note the following:

how you installed Python

how you installed NumPy

your operating system

whether or not you have multiple versions of Python installed

if you built from source, your compiler versions and ideally a build log

when investigating further and asking for support.

Using Python from conda ﴾Anaconda﴿
Please make sure that you have activated your conda environment. See also the conda user-

guide. If you use an external editor/development environment it will have to be set up

correctly. See below for solutions for some common setups.

Using PyCharm with Anaconda Python
There are fairly common issues when using PyCharm together with Anaconda, please see

the PyCharm support

Using VS Code with Anaconda Python ﴾or environments﴿
A commonly reported issue is related to the environment activation within VSCode. Please

see the VSCode support for information on how to correctly set up VSCode with virtual

environments or conda.

Using Eclipse/PyDev with Anaconda Python ﴾or
environments﴿

Note��

 ὐ�
Skip to main content

ImportError

Segfaults or crashes

https://numpy.org/devdocs/index.html
https://numpy.org/devdocs/index.html
https://numpy.org/devdocs/user/troubleshooting-importerror.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#activating-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#activating-an-environment
https://www.jetbrains.com/help/pycharm/conda-support-creating-conda-virtual-environment.html
https://code.visualstudio.com/docs/python/environments

Please see the Anaconda Documentation on how to properly con몭gure Eclipse/PyDev to use

Anaconda Python with speci몭c conda environments.

Raspberry Pi
There are sometimes issues reported on Raspberry Pi setups when installing using pip3

install (or pip install). These will typically mention:

libf77blas.so.3: cannot open shared object file: No such file or directory

The solution will be to either:

sudo apt‐get install libatlas‐base‐dev

to install the missing libraries expected by the self-compiled NumPy (ATLAS is a possible

provider of linear algebra).

Alternatively use the NumPy provided by Raspbian. In which case run:

pip3 uninstall numpy # remove previously installed version
apt install python3‐numpy

Debug build on Windows
Rather than building your project in DEBUG mode on windows, try building in RELEASE

mode with debug symbols and no optimization. Full DEBUG mode on windows changes the

names of the DLLs python expects to 몭nd, so if you wish to truly work in DEBUG mode you

will need to recompile the entire stack of python modules you work with including NumPy

All setups
Occasionally there may be simple issues with old or bad installations of NumPy. In this case

you may just try to uninstall and reinstall NumPy. Make sure that NumPy is not found after

uninstalling.

Development setup
If you are using a development setup, make sure to run git clean ‐xdf to delete all 몭les

not under version control (be careful not to lose any modi몭cations you made, e.g. site.cfg

). In many cases 몭les from old builds may lead to incorrect builds.

Check environment variables
In general how to set and check your environment variables depends on your system. If you

can open a correct python shell, you can also run the following in python:

import os
print("PYTHONPATH:", os.environ.get('PYTHONPATH'))
print("PATH:", os.environ.get('PATH'))

This may mainly help you if you are not running the python and/or NumPy version you are

expecting to run.

C‐API incompatibility
If you see an error like:

You may have:

A bad extension “wheel” (binary install) that should use oldest-support-numpy (with

manual constraints if necessary) to build their binary packages.

RuntimeError: module compiled against API version v1 but this version of numpy is v2

https://docs.anaconda.com/anaconda/user-guide/tasks/integration/eclipse-pydev/
https://pypi.org/project/oldest-supported-numpy/

An environment issue messing with package versions.

Incompatible package versions somehow enforced manually.

An extension module compiled locally against a very recent version followed by a

NumPy downgrade.

A compiled extension copied to a di몭erent computer with an older NumPy version.

The best thing to do if you see this error is to contact the maintainers of the package that is

causing problem so that they can solve the problem properly.

However, while you wait for a solution, a work around that usually works is to upgrade the

NumPy version:

pip install numpy ‐‐upgrade

Segfaults or crashes
NumPy tries to use advanced CPU features (SIMD) to speed up operations. If you are getting

an “illegal instruction” error or a segfault, one cause could be that the environment claims it

can support one or more of these features but actually cannot. This can happen inside a

docker image or a VM (qemu, VMWare, …)

You can use the output of np.show_runtime() to show which SIMD features are detected.

For instance:

>>> np.show_runtime()
WARNING: `threadpoolctl` not found in system! Install it by `pip install \
threadpoolctl`. Once installed, try `np.show_runtime` again for more detailed
build information
[{'simd_extensions': {'baseline': ['SSE', 'SSE2', 'SSE3'],
 'found': ['SSSE3',
 'SSE41',
 'POPCNT',
 'SSE42',
 'AVX',
 'F16C',
 'FMA3',
 'AVX2'],
 'not_found': ['AVX512F',
 'AVX512CD',
 'AVX512_KNL',
 'AVX512_KNM',
 'AVX512_SKX',
 'AVX512_CLX',
 'AVX512_CNL',
 'AVX512_ICL']}}]

In this case, it shows AVX2 and FMA3 under the found section, so you can try disabling

them by setting NPY_DISABLE_CPU_FEATURES="AVX2,FMA3" in your environment before

running python (for cmd.exe on windows):

>SET NPY_DISABLE_CPU_FEATURES="AVX2,FMA3"
>python <myprogram.py>

By installing threadpoolctl np.show_runtime() will show additional information:

...
{'architecture': 'Zen',
 'filepath': '/tmp/venv3/lib/python3.9/site‐packages/numpy.libs/libopenblas64_p‐r0‐15028c96.3.21.so'
 'internal_api': 'openblas',
 'num_threads': 24,
 'prefix': 'libopenblas',
 'threading_layer': 'pthreads',
 'user_api': 'blas',
 'version': '0.3.21'}]

If you use the wheel from PyPI, it contains code from the OpenBLAS project to speed up

matrix operations. This code too can try to use SIMD instructions. It has a di몭erent

mechanism for choosing which to use, based on a CPU architecture, You can override this

architecture by setting OPENBLAS_CORETYPE : a minimal value for x86_64 is

OPENBLAS_CORETYPE=Haswell . This too needs to be set before running your python (this

time for posix):

$ OPENBLAS_CORETYPE=Haswell python <myprogram.py>

$ OPENBLAS_CORETYPE=Haswell python <myprogram.py>

© Copyright 2008-2023, NumPy Developers.

Created using Sphinx 7.2.6.
Built with the PyData Sphinx Theme 0.13.3.

https://www.sphinx-doc.org/
https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html

