
Command
Line Interface

Guidelines

An open-source guide to help you write
better command-line programs, taking

traditional UNIX principles and updating
them for the modern day.

Contents

https://github.com/cli-guidelines/cli-guidelines

Aanand Prasad
Engineer at Squarespace, co-creator of
Docker Compose.
@aanandprasad

Ben Firshman
Co-creator Replicate, co-creator of
Docker Compose.
@bfirsh

Carl Tashian
Offroad Engineer at Smallstep, first
engineer at Zipcar, co-founder Trove.
tashian.com @tashian

Eva Parish
Technical Writer at Squarespace, O’Reilly
contributor.
evaparish.com @evpari

Design by Mark Hurrell. Thanks to Andreas
Jansson for early contributions, and
Andrew Reitz, Ashley Williams, Brendan
Falk, Chester Ramey, Dj Walker-Morgan,
Jacob Maine, James Coglan, Michael

AuthorsCLIG:

https://twitter.com/aanandprasad
https://replicate.ai/
https://twitter.com/bfirsh
https://smallstep.com/
https://tashian.com/
https://twitter.com/tashian
https://evaparish.com/
https://twitter.com/evpari
https://mhurrell.co.uk/

Dwan, and Steve Klabnik for reviewing
drafts.

Star 2,767

Join us on Discord if you want to discuss
the guide or CLI design.

In the 1980s, if you wanted a personal
computer to do something for you, you
needed to know what to type when
confronted with C:\> or ~$. Help came
in the form of thick, spiral-bound
manuals. Error messages were opaque.
There was no Stack Overflow to save you.
But if you were lucky enough to have
internet access, you could get help from
Usenet—an early internet community

ForewordCLIG:

https://discord.gg/EbAW5rUCkE

filled with other people who were just
as frustrated as you were. They could
either help you solve your problem, or at
least provide some moral support and
camaraderie.

Forty years later, computers have become
so much more accessible to everyone,
often at the expense of low-level end
user control. On many devices, there is
no command-line access at all, in part
because it goes against the corporate
interests of walled gardens and app
stores.

Most people today don’t know what the
command line is, much less why they
would want to bother with it. As
computing pioneer Alan Kay said in a 2017
interview, “Because people don’t
understand what computing is about, they
think they have it in the iPhone, and
that illusion is as bad as the illusion
that ‘Guitar Hero’ is the same as a real
guitar.”

Kay’s “real guitar” isn’t the CLI—not
exactly. He was talking about ways of

https://www.fastcompany.com/40435064/what-alan-kay-thinks-about-the-iphone-and-technology-now
https://www.fastcompany.com/40435064/what-alan-kay-thinks-about-the-iphone-and-technology-now

programming computers that offer the
power of the CLI and that transcend
writing software in text files. There is
a belief among Kay’s disciples that we
need to break out of a text-based local
maximum that we’ve been living in for
decades.

It’s exciting to imagine a future where
we program computers very differently.
Even today, spreadsheets are by far the
most popular programming language, and
the no-code movement is taking off
quickly as it attempts to replace some
of the intense demand for talented
programmers.

Yet with its creaky, decades-old
constraints and inexplicable quirks, the
command line is still the most versatile
corner of the computer. It lets you pull
back the curtain, see what’s really going
on, and creatively interact with the
machine at a level of sophistication and
depth that GUIs cannot afford. It’s
available on almost any laptop, for
anyone who wants to learn it. It can be
used interactively, or it can be

automated. And, it doesn’t change as fast
as other parts of the system. There is
creative value in its stability.

So, while we still have it, we should
try to maximize its utility and
accessibility.

A lot has changed about how we program
computers since those early days. The
command line of the past was machine-
first: little more than a REPL on top of
a scripting platform. But as general-
purpose interpreted languages have
flourished, the role of the shell script
has shrunk. Today’s command line is
human-first: a text-based UI that affords
access to all kinds of tools, systems and
platforms. In the past, the editor was
inside the terminal—today, the terminal
is just as often a feature of the editor.
And there’s been a proliferation of git -
like multi-tool commands. Commands
within commands, and high-level
commands that perform entire workflows
rather than atomic functions.

Inspired by traditional UNIX philosophy,

driven by an interest in encouraging a
more delightful and accessible CLI
environment, and guided by our
experiences as programmers, we decided
it was time to revisit the best
practices and design principles for
building command-line programs.

Long live the command line!

This document covers both high-level
design philosophy, and concrete
guidelines. It’s heavier on the
guidelines because our philosophy as
practitioners is not to philosophize too
much. We believe in learning by example,
so we’ve provided plenty of those.

IntroductionCLIG:

This guide doesn’t cover full-screen
terminal programs like emacs and vim.
Full-screen programs are niche projects—
very few of us will ever be in the
position to design one.

This guide is also agnostic about
programming languages and tooling in
general.

Who is this guide for?

If you are creating a CLI program and
you are looking for principles and
concrete best practices for its UI
design, this guide is for you.
If you are a professional “CLI UI
designer,” that’s amazing—we’d love
to learn from you.
If you’d like to avoid obvious
missteps of the variety that go
against 40 years of CLI design
conventions, this guide is for you.
If you want to delight people with
your program’s good design and
helpful help, this guide is definitely
for you.
If you are creating a GUI program,

this guide is not for you—though you
may learn some GUI anti-patterns if
you decide to read it anyway.
If you are designing an immersive,
full-screen CLI port of Minecraft,
this guide isn’t for you. (But we
can’t wait to see it!)

These are what we consider to be the
fundamental principles of good CLI
design.

Traditionally, UNIX commands were
written under the assumption they were
going to be used primarily by other

PhilosophyCLIG:

Human-first designCLIG:

programs. They had more in common with
functions in a programming language than
with graphical applications.

Today, even though many CLI programs are
used primarily (or even exclusively) by
humans, a lot of their interaction design
still carries the baggage of the past.
It’s time to shed some of this baggage:
if a command is going to be used
primarily by humans, it should be
designed for humans first.

A core tenet of the original UNIX
philosophy is the idea that small,
simple programs with clean interfaces
can be combined to build larger systems.
Rather than stuff more and more features

Simple parts that work togetherCLIG:

https://en.wikipedia.org/wiki/Unix_philosophy
https://en.wikipedia.org/wiki/Unix_philosophy

into those programs, you make programs
that are modular enough to be recombined
as needed.

In the old days, pipes and shell scripts
played a crucial role in the process of
composing programs together. Their role
might have diminished with the rise of
general-purpose interpreted languages,
but they certainly haven’t gone away.
What’s more, large-scale automation—in
the form of CI/CD, orchestration and
configuration management—has flourished.
Making programs composable is just as
important as ever.

Fortunately, the long-established
conventions of the UNIX environment,
designed for this exact purpose, still
help us today. Standard in/out/err,
signals, exit codes and other mechanisms
ensure that different programs click
together nicely. Plain, line-based text
is easy to pipe between commands. JSON,
a much more recent invention, affords us
more structure when we need it, and lets
us more easily integrate command-line
tools with the web.

Whatever software you’re building, you
can be absolutely certain that people
will use it in ways you didn’t
anticipate. Your software will become a
part in a larger system—your only choice
is over whether it will be a well-
behaved part.

Most importantly, designing for
composability does not need to be at odds
with designing for humans first. Much of
the advice in this document is about how
to achieve both.

The terminal’s conventions are hardwired
into our fingers. We had to pay an
upfront cost by learning about command

Consistency across programsCLIG:

line syntax, flags, environment variables
and so on, but it pays off in long-term
efficiency… as long as programs are
consistent.

Where possible, a CLI should follow
patterns that already exist. That’s what
makes CLIs intuitive and guessable;
that’s what makes users efficient.

That being said, sometimes consistency
conflicts with ease of use. For example,
many long-established UNIX commands
don’t output much information by
default, which can cause confusion or
worry for people less familiar with the
command line.

When following convention would
compromise a program’s usability, it
might be time to break with it—but such
a decision should be made with care.

The terminal is a world of pure
information. You could make an argument
that information is the interface—and
that, just like with any interface,
there’s often too much or too little of
it.

A command is saying too little when it
hangs for several minutes and the user
starts to wonder if it’s broken. A
command is saying too much when it
dumps pages and pages of debugging
output, drowning what’s truly important
in an ocean of loose detritus. The end
result is the same: a lack of clarity,
leaving the user confused and irritated.

It can be very difficult to get this
balance right, but it’s absolutely
crucial if software is to empower and
serve its users.

Saying (just) enoughCLIG:

When it comes to making functionality
discoverable, GUIs have the upper hand.
Everything you can do is laid out in
front of you on the screen, so you can
find what you need without having to
learn anything, and perhaps even discover
things you didn’t know were possible.

It is assumed that command-line
interfaces are the opposite of this—that
you have to remember how to do
everything. The original Macintosh Human
Interface Guidelines, published in 1987,
recommend “See-and-point (instead of
remember-and-type),” as if you could
only choose one or the other.

These things needn’t be mutually
exclusive. The efficiency of using the

Ease of discoveryCLIG:

https://archive.org/details/applehumaninterf00appl
https://archive.org/details/applehumaninterf00appl

command-line comes from remembering
commands, but there’s no reason the
commands can’t help you learn and
remember.

Discoverable CLIs have comprehensive help
texts, provide lots of examples, suggest
what command to run next, suggest what
to do when there is an error. There are
lots of ideas that can be stolen from
GUIs to make CLIs easier to learn and
use, even for power users.

Citation: The Design of Everyday Things
(Don Norman), Macintosh Human Interface
Guidelines

GUI design, particularly in its early

Conversation as the normCLIG:

days, made heavy use of metaphor:
desktops, files, folders, recycle bins.
It made a lot of sense, because
computers were still trying to bootstrap
themselves into legitimacy. The ease of
implementation of metaphors was one of
the huge advantages GUIs wielded over
CLIs. Ironically, though, the CLI has
embodied an accidental metaphor all
along: it’s a conversation.

Beyond the most utterly simple
commands, running a program usually
involves more than one invocation.
Usually, this is because it’s hard to get
it right the first time: the user types a
command, gets an error, changes the
command, gets a different error, and so
on, until it works. This mode of
learning through repeated failure is like
a conversation the user is having with
the program.

Trial-and-error isn’t the only type of
conversational interaction, though. There
are others:

Running one command to set up a tool

and then learning what commands to
run to actually start using it.
Running several commands to set up an
operation, and then a final command
to run it (e.g. multiple git add s,
followed by a git commit).
Exploring a system—for example,
doing a lot of cd and ls to get a
sense of a directory structure, or
git log and git show to explore the
history of a file.
Doing a dry-run of a complex
operation before running it for real.

Acknowledging the conversational nature
of command-line interaction means you
can bring relevant techniques to bear on
its design. You can suggest possible
corrections when user input is invalid,
you can make the intermediate state
clear when the user is going through a
multi-step process, you can confirm for
them that everything looks good before
they do something scary.

The user is conversing with your
software, whether you intended it or
not. At worst, it’s a hostile

conversation which makes them feel
stupid and resentful. At best, it’s a
pleasant exchange that speeds them on
their way with newfound knowledge and a
feeling of achievement.

Further reading: The Anti-Mac User
Interface (Don Gentner and Jakob Nielsen)

Robustness is both an objective and a
subjective property. Software should be
robust, of course: unexpected input
should be handled gracefully, operations
should be idempotent where possible, and
so on. But it should also feel robust.

You want your software to feel like it
isn’t going to fall apart. You want it to

RobustnessCLIG:

https://www.nngroup.com/articles/anti-mac-interface/
https://www.nngroup.com/articles/anti-mac-interface/

feel immediate and responsive, as if it
were a big mechanical machine, not a
flimsy plastic “soft switch.”

Subjective robustness requires attention
to detail and thinking hard about what
can go wrong. It’s lots of little things:
keeping the user informed about what’s
happening, explaining what common errors
mean, not printing scary-looking stack
traces.

As a general rule, robustness can also
come from keeping it simple. Lots of
special cases and complex code tend to
make a program fragile.

Command-line tools are a programmer’s

EmpathyCLIG:

creative toolkit, so they should be
enjoyable to use. This doesn’t mean
turning them into a video game, or using
lots of emoji (though there’s nothing
inherently wrong with emoji 😉). It
means giving the user the feeling that
you are on their side, that you want
them to succeed, that you have thought
carefully about their problems and how
to solve them.

There’s no list of actions you can take
that will ensure they feel this way,
although we hope that following our
advice will take you some of the way
there. Delighting the user means
exceeding their expectations at every
turn, and that starts with empathy.

ChaosCLIG:

The world of the terminal is a mess.
Inconsistencies are everywhere, slowing
us down and making us second-guess
ourselves.

Yet it’s undeniable that this chaos has
been a source of power. The terminal,
like the UNIX-descended computing
environment in general, places very few
constraints on what you can build. In
that space, all manner of invention has
bloomed.

It’s ironic that this document implores
you to follow existing patterns, right
alongside advice that contradicts decades
of command-line tradition. We’re just as
guilty of breaking the rules as anyone.

The time might come when you, too, have
to break the rules. Do so with intention
and clarity of purpose.

“Abandon a standard when it is
demonstrably harmful to productivity or
user satisfaction.” — Jef Raskin, The
Humane Interface

https://en.wikipedia.org/wiki/The_Humane_Interface
https://en.wikipedia.org/wiki/The_Humane_Interface

This is a collection of specific things
you can do to make your command-line
program better.

The first section contains the essential
things you need to follow. Get these
wrong, and your program will be either
hard to use or a bad CLI citizen.

The rest are nice-to-haves. If you have

GuidelinesCLIG:

the time and energy to add these things,
your program will be a lot better than
the average program.

The idea is that, if you don’t want to
think too hard about the design of your
program, you don’t have to: just follow
these rules and your program will
probably be good. On the other hand, if
you’ve thought about it and determined
that a rule is wrong for your program,
that’s fine. (There’s no central
authority that will reject your program
for not following arbitrary rules.)

Also—these rules aren’t written in
stone. If you disagree with a general
rule for good reason, we hope you’ll
propose a change.

There are a few basic rules you need to
follow. Get these wrong, and your
program will be either very hard to use,
or flat-out broken.

The BasicsCLIG:

https://github.com/cli-guidelines/cli-guidelines

Use a command-line argument parsing
library where you can. Either your
language’s built-in one, or a good third-
party one. They will normally handle
arguments, flag parsing, help text, and
even spelling suggestions in a sensible
way.

Here are some that we like:

Multi-platform: docopt
Bash: argbash
Go: Cobra, cli
Haskell: optparse-applicative
Java: picocli
Node: oclif
Deno: flags
Perl: Getopt::Long
PHP: console, CLImate
Python: Argparse, Click, Typer
Ruby: TTY
Rust: clap, structopt
Swift: swift-argument-parser

Return zero exit code on success, non-
zero on failure. Exit codes are how
scripts determine whether a program
succeeded or failed, so you should report

http://docopt.org/
https://argbash.dev/
https://github.com/spf13/cobra
https://github.com/urfave/cli
https://hackage.haskell.org/package/optparse-applicative
https://picocli.info/
https://oclif.io/
https://deno.land/std/flags
https://metacpan.org/pod/Getopt::Long
https://github.com/symfony/console
https://climate.thephpleague.com/
https://docs.python.org/3/library/argparse.html
https://click.palletsprojects.com/
https://github.com/tiangolo/typer
https://ttytoolkit.org/
https://clap.rs/
https://github.com/TeXitoi/structopt
https://github.com/apple/swift-argument-parser

this correctly. Map the non-zero exit
codes to the most important failure
modes.

Send output to stdout . The primary
output for your command should go to
stdout . Anything that is machine
readable should also go to stdout—this
is where piping sends things by default.

Send messaging to stderr . Log messages,
errors, and so on should all be sent to
stderr . This means that when commands
are piped together, these messages are
displayed to the user and not fed into
the next command.

Display help text when passed no options,

HelpCLIG:

the -h flag, or the --help flag.

Display a concise help text by default.
If you can, display help by default when
myapp or myapp subcommand is run. Unless
your program is very simple and does
something obvious by default (e.g. ls),
or your program reads input interactively
(e.g. cat).

The concise help text should only
include:

A description of what your program
does.
One or two example invocations.
Descriptions of flags, unless there
are lots of them.
An instruction to pass the --help
flag for more information.

jq does this well. When you type jq , it
displays an introductory description and
an example, then prompts you to pass jq
--help for the full listing of flags:

Show full help when -h and --help is
passed. All of these should show help:

$ jq

jq - commandline JSON processor [version 1.6]

Usage: jq [options] <jq filter> [file...]

 jq [options] --args <jq filter> [strings...]

 jq [options] --jsonargs <jq filter> [JSON_TEXTS...]

jq is a tool for processing JSON inputs, applying the given filter to

its JSON text inputs and producing the filter's results as JSON on

standard output.

The simplest filter is ., which copies jq's input to its output

unmodified (except for formatting, but note that IEEE754 is used

for number representation internally, with all that that implies).

For more advanced filters see the jq(1) manpage ("man jq")

and/or https://stedolan.github.io/jq

Example:

 $ echo '{"foo": 0}' | jq .

 {

 "foo": 0

 }

For a listing of options, use jq --help.

$ myapp

$ myapp --help

Ignore any other flags and arguments that
are passed—you should be able to add -h
to the end of anything and it should show
help. Don’t overload -h .

If your program is git -like, the
following should also offer help:

Provide a support path for feedback and
issues. A website or GitHub link in the
top-level help text is common.

In help text, link to the web version of
the documentation. If you have a specific
page or anchor for a subcommand, link
directly to that. This is particularly

$ myapp -h

$ myapp help

$ myapp help subcommand

$ myapp subcommand --help

$ myapp subcommand -h

useful if there is more detailed
documentation on the web, or further
reading that might explain the behavior
of something.

Lead with examples. Users tend to use
examples over other forms of
documentation, so show them first in the
help page, particularly the common
complex uses. If it helps explain what
it’s doing and it isn’t too long, show
the actual output too.

You can tell a story with a series of
examples, building your way toward
complex uses.

If you’ve got loads of examples, put
them somewhere else, in a cheat sheet
command or a web page. It’s useful to
have exhaustive, advanced examples, but
you don’t want to make your help text
really long.

For more complex use cases, e.g. when
integrating with another tool, it might
be appropriate to write a fully-fledged
tutorial.

Display the most common flags and
commands at the start of the help text.
It’s fine to have lots of flags, but if
you’ve got some really common ones,
display them first. For example, the Git
command displays the commands for
getting started and the most commonly
used subcommands first:

$ git

usage: git [--version] [--help] [-C <path>] [-c <name>=<value>]

 [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path

 [-p | --paginate | -P | --no-pager] [--no-replace-objects] [-

 [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]

 <command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)

 clone Clone a repository into a new directory

 init Create an empty Git repository or reinitialize an existing

work on the current change (see also: git help everyday)

 add Add file contents to the index

 mv Move or rename a file, a directory, or a symlink

 reset Reset current HEAD to the specified state

 rm Remove files from the working tree and from the index

examine the history and state (see also: git help revisions)

 bisect Use binary search to find the commit that introduced a bug

 grep Print lines matching a pattern

Use formatting in your help text. Bold
headings make it much easier to scan.
But, try to do it in a terminal-
independent way so that your users aren’t
staring down a wall of escape
characters.

 log Show commit logs

 show Show various types of objects

 status Show the working tree status

…

$ heroku apps --help

list your apps

USAGE

 $ heroku apps

OPTIONS

 -A, --all include apps in all teams

 -p, --personal list apps in personal account when a default team is

 -s, --space=space filter by space

 -t, --team=team team to use

 --json output in json format

EXAMPLES

 $ heroku apps

 === My Apps

 example

Note: When heroku apps --help is piped
through a pager, the command emits no
escape characters.

If the user did something wrong and you
can guess what they meant, suggest it.
For example, brew update jq tells you
that you should run brew upgrade jq .

You can ask if they want to run the
suggested command, but don’t force it on

 example2

 === Collaborated Apps

 theirapp other@owner.name

COMMANDS

 apps:create creates a new app

 apps:destroy permanently destroy an app

 apps:errors view app errors

 apps:favorites list favorited apps

 apps:info show detailed app information

 apps:join add yourself to a team app

 apps:leave remove yourself from a team app

 apps:lock prevent team members from joining an app

 apps:open open the app in a web browser

 apps:rename rename an app

 apps:stacks show the list of available stacks

 apps:transfer transfer applications to another user or team

 apps:unlock unlock an app so any team member can join

them. For example:

Rather than suggesting the corrected
syntax, you might be tempted to just run
it for them, as if they’d typed it right
in the first place. Sometimes this is
the right thing to do, but not always.

Firstly, invalid input doesn’t
necessarily imply a simple typo—it can
often mean the user has made a logical
mistake, or misused a shell variable.
Assuming what they meant can be
dangerous, especially if the resulting
action modifies state.

Secondly, be aware that if you change
what the user typed, they won’t learn
the correct syntax. In effect, you’re
ruling that the way they typed it is
valid and correct, and you’re committing

$ heroku pss

 › Warning: pss is not a heroku command.

Did you mean ps? [y/n]:

to supporting that indefinitely. Be
intentional in making that decision, and
document both syntaxes.

Further reading: “Do What I Mean”

If your command is expecting to have
something piped to it and stdin is an
interactive terminal, display help
immediately and quit. This means it
doesn’t just hang, like cat .
Alternatively, you could print a log
message to stderr .

The purpose of help text is to give a
brief, immediate sense of what your tool
is, what options are available, and how
to perform the most common tasks.

DocumentationCLIG:

http://www.catb.org/~esr/jargon/html/D/DWIM.html

Documentation, on the other hand, is
where you go into full detail. It’s
where people go to understand what your
tool is for, what it isn’t for, how it
works and how to do everything they
might need to do.

Provide web-based documentation. People
need to be able to search online for your
tool’s documentation, and to link other
people to specific parts. The web is the
most inclusive documentation format
available.

Provide terminal-based documentation.
Documentation in the terminal has
several nice properties: it’s fast to
access, it stays in sync with the
specific installed version of the tool,
and it works without an internet
connection.

Consider providing man pages. man pages,
Unix’s original system of documentation,
are still in use today, and many users
will reflexively check man mycmd as a
first step when trying to learn about
your tool. To make them easier to

https://en.wikipedia.org/wiki/Man_page

generate, you can use a tool like ronn
(which can also generate your web docs).

However, not everyone knows about man ,
and it doesn’t run on all platforms, so
you should also make sure your terminal
docs are accessible via your tool itself.
For example, git and npm make their
man pages accessible via the help
subcommand, so npm help ls is equivalent
to man npm-ls .

NPM-LS(1) NPM

NAME

 npm-ls - List installed packages

SYNOPSIS

 npm ls [[<@scope>/]<pkg> ...]

 aliases: list, la, ll

DESCRIPTION

 This command will print to stdout all the versions of packages tha

 installed, as well as their dependencies, in a tree-structure.

 ...

http://rtomayko.github.io/ronn/ronn.1.html

Human-readable output is paramount.
Humans come first, machines second. The
most simple and straightforward
heuristic for whether a particular output
stream (stdout or stderr) is being read
by a human is whether or not it’s a TTY.
Whatever language you’re using, it will
have a utility or library for doing this
(e.g. Python, Node, Go).

Further reading on what a TTY is.

Have machine-readable output where it
does not impact usability. Streams of
text is the universal interface in UNIX.
Programs typically output lines of text,
and programs typically expect lines of
text as input, therefore you can compose

OutputCLIG:

https://stackoverflow.com/questions/858623/how-to-recognize-whether-a-script-is-running-on-a-tty
https://nodejs.org/api/process.html#process_a_note_on_process_i_o
https://github.com/mattn/go-isatty
https://unix.stackexchange.com/a/4132

multiple programs together. This is
normally done to make it possible to
write scripts, but it can also help the
usability for humans using programs. For
example, a user should be able to pipe
output to grep and it should do what
they expect.

“Expect the output of every program to
become the input to another, as yet
unknown, program.” — Doug McIlroy

If human-readable output breaks machine-
readable output, use --plain to display
output in plain, tabular text format for
integration with tools like grep or
awk . In some cases, you might need to
output information in a different way to
make it human-readable.

For example, if you are displaying a
line-based table, you might choose to
split a cell into multiple lines, fitting
in more information while keeping it
within the width of the screen. This
breaks the expected behavior of there
being one piece of data per line, so you
should provide a --plain flag for

https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html

scripts, which disables all such
manipulation and outputs one record per
line.

Display output as formatted JSON if --
json is passed. JSON allows for more
structure than plain text, so it makes it
much easier to output and handle complex
data structures. jq is a common tool for
working with JSON on the command-line,
and there is now a whole ecosystem of
tools that output and manipulate JSON.

It is also widely used on the web, so by
using JSON as the input and output of
programs, you can pipe directly to and
from web services using curl .

Display output on success, but keep it
brief. Traditionally, when nothing is
wrong, UNIX commands display no output
to the user. This makes sense when
they’re being used in scripts, but can
make commands appear to be hanging or
broken when used by humans. For example,
cp will not print anything, even if it
takes a long time.

https://ilya-sher.org/2018/04/10/list-of-json-tools-for-command-line/
https://ilya-sher.org/2018/04/10/list-of-json-tools-for-command-line/

It’s rare that printing nothing at all is
the best default behavior, but it’s
usually best to err on the side of less.

For instances where you do want no
output (for example, when used in shell
scripts), to avoid clumsy redirection of
stderr to /dev/null , you can provide a
-q option to suppress all non-essential
output.

If you change state, tell the user. When
a command changes the state of a system,
it’s especially valuable to explain what
has just happened, so the user can model
the state of the system in their head—
particularly if the result doesn’t
directly map to what the user requested.

For example, git push tells you exactly
what it is doing, and what the new state
of the remote branch is:

$ git push

Enumerating objects: 18, done.

Counting objects: 100% (18/18), done.

Make it easy to see the current state of
the system. If your program does a lot
of complex state changes and it is not
immediately visible in the filesystem,
make sure you make this easy to view.

For example, git status tells you as
much information as possible about the
current state of your Git repository, and
some hints at how to modify the state:

Delta compression using up to 8 threads

Compressing objects: 100% (10/10), done.

Writing objects: 100% (10/10), 2.09 KiB | 2.09 MiB/s, done.

Total 10 (delta 8), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (8/8), completed with 8 local objects.

To github.com:replicate/replicate.git

 + 6c22c90...a2a5217 bfirsh/fix-delete -> bfirsh/fix-delete

$ git status

On branch bfirsh/fix-delete

Your branch is up to date with 'origin/bfirsh/fix-delete'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

modified: cli/pkg/cli/rm.go

no changes added to commit (use "git add" and/or "git commit -a")

Suggest commands the user should run.
When several commands form a workflow,
suggesting to the user commands they can
run next helps them learn how to use
your program and discover new
functionality. For example, in the git
status output above, it suggests
commands you can run to modify the state
you are viewing.

Actions crossing the boundary of the
program’s internal world should usually
be explicit. This includes things like:

Reading or writing files that the
user didn’t explicitly pass as
arguments (unless those files are
storing internal program state, such
as a cache).
Talking to a remote server, e.g. to
download a file.

Increase information density—with ASCII
art! For example, ls shows permissions
in a scannable way. When you first see

it, you can ignore most of the
information. Then, as you learn how it
works, you pick out more patterns over
time.

Use color with intention. For example,
you might want to highlight some text so
the user notices it, or use red to
indicate an error. Don’t overuse it—if
everything is a different color, then the
color means nothing and only makes it
harder to read.

Disable color if your program is not in a
terminal or the user requested it. These
things should disable colors:

-rw-r--r-- 1 root root 68 Aug 22 23:20 resolv.conf

lrwxrwxrwx 1 root root 13 Mar 14 20:24 rmt -> /usr/sbin/rmt

drwxr-xr-x 4 root root 4.0K Jul 20 14:51 security

drwxr-xr-x 2 root root 4.0K Jul 20 14:53 selinux

-rw-r----- 1 root shadow 501 Jul 20 14:44 shadow

-rw-r--r-- 1 root root 116 Jul 20 14:43 shells

drwxr-xr-x 2 root root 4.0K Jul 20 14:57 skel

-rw-r--r-- 1 root root 0 Jul 20 14:43 subgid

-rw-r--r-- 1 root root 0 Jul 20 14:43 subuid

stdout or stderr is not an
interactive terminal (a TTY). It’s
best to individually check—if you’re
piping stdout to another program,
it’s still useful to get colors on
stderr .
The NO_COLOR environment variable is
set.
The TERM environment variable has
the value dumb .
The user passes the option --no-
color .
You may also want to add a
MYAPP_NO_COLOR environment variable
in case users want to disable color
specifically for your program.

Further reading: no-color.org, 12 Factor
CLI Apps

If stdout is not an interactive
terminal, don’t display any animations.
This will stop progress bars turning into
Christmas trees in CI log output.

Use symbols and emoji where it makes
things clearer. Pictures can be better

https://no-color.org/
https://medium.com/@jdxcode/12-factor-cli-apps-dd3c227a0e46
https://medium.com/@jdxcode/12-factor-cli-apps-dd3c227a0e46

than words if you need to make several
things distinct, catch the user’s
attention, or just add a bit of
character. Be careful, though—it can be
easy to overdo it and make your program
look cluttered or feel like a toy.

For example, yubikey-agent uses emoji to
add structure to the output so it isn’t
just a wall of text, and a ❌ to draw
your attention to an important piece of
information:

$ yubikey-agent -setup

🔐 The PIN is up to 8 numbers, letters, or symbols. Not just numbers!

❌ The key will be lost if the PIN and PUK are locked after 3 incorrect

Choose a new PIN/PUK:

Repeat the PIN/PUK:

🧪 Retriculating splines …

✅ Done! This YubiKey is secured and ready to go.

🤏 When the YubiKey blinks, touch it to authorize the login.

🔑 Here's your new shiny SSH public key:

ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBB

UwlHnUFXgENO3ifPZd8zoSKMxESxxot4tMgvfXjmRp5G3BGrAnonncE7Aj11pn3SSYgEcrrn2

💭 Remember: everything breaks, have a backup plan for when this YubiKey

https://github.com/FiloSottile/yubikey-agent

By default, don’t output information
that’s only understandable by the
creators of the software. If a piece of
output serves only to help you (the
developer) understand what your software
is doing, it almost certainly shouldn’t
be displayed to normal users by default—
only in verbose mode.

Invite usability feedback from outsiders
and people who are new to your project.
They’ll help you see important issues
that you are too close to the code to
notice.

Don’t treat stderr like a log file, at
least not by default. Don’t print log
level labels (ERR , WARN , etc.) or
extraneous contextual information, unless
in verbose mode.

Use a pager (e.g. less) if you are
outputting a lot of text. For example,
git diff does this by default. Using a
pager can be error-prone, so be careful
with your implementation such that you

don’t make the experience worse for the
user. You shouldn’t use a pager if stdin
or stdout is not an interactive
terminal.

A good sensible set of options to use for
less is less -FIRX . This does not page
if the content fills one screen, ignores
case when you search, enables color and
formatting, and leaves the contents on
the screen when less quits.

There might be libraries in your language
that are more robust than piping to
less . For example, pypager in Python.

One of the most common reasons to
consult documentation is to fix errors.

ErrorsCLIG:

https://github.com/prompt-toolkit/pypager

If you can make errors into
documentation, then this will save the
user loads of time.

Catch errors and rewrite them for
humans. If you’re expecting an error to
happen, catch it and rewrite the error
message to be useful. Think of it like a
conversation, where the user has done
something wrong and the program is
guiding them in the right direction.
Example: “Can’t write to file.txt. You
might need to make it writable by
running ‘chmod +w file.txt’.”

Signal-to-noise ratio is crucial. The
more irrelevant output you produce, the
longer it’s going to take the user to
figure out what they did wrong. If your
program produces multiple errors of the
same type, consider grouping them under
a single explanatory header instead of
printing many similar-looking lines.

Consider where the user will look first.
Put the most important information at
the end of the output. The eye will be
drawn to red text, so use it

https://www.nngroup.com/articles/error-message-guidelines/
https://www.nngroup.com/articles/error-message-guidelines/

intentionally and sparingly.

If there is an unexpected or
unexplainable error, provide debug and
traceback information, and instructions
on how to submit a bug. That said, don’t
forget about the signal-to-noise ratio:
you don’t want to overwhelm the user
with information they don’t understand.
Consider writing the debug log to a file
instead of printing it to the terminal.

Make it effortless to submit bug
reports. One nice thing you can do is
provide a URL and have it pre-populate as
much information as possible.

A note on terminology:

Arguments and flagsCLIG:

Arguments, or args, are positional
parameters to a command. For
example, the file paths you provide
to cp are args. The order of args is
often important: cp foo bar means
something different from cp bar foo .
Flags are named parameters, denoted
with either a hyphen and a single-
letter name (-r) or a double hyphen
and a multiple-letter name (--
recursive). They may or may not also
include a user-specified value (--
file foo.txt , or --file=foo.txt). The
order of flags, generally speaking,
does not affect program semantics.

Prefer flags to args. It’s a bit more
typing, but it makes it much clearer
what is going on. It also makes it
easier to make changes to how you accept
input in the future. Sometimes when
using args, it’s impossible to add new
input without breaking existing behavior
or creating ambiguity.

Citation: 12 Factor CLI Apps.

https://medium.com/@jdxcode/12-factor-cli-apps-dd3c227a0e46

Have full-length versions of all flags.
For example, have both -h and --help .
Having the full version is useful in
scripts where you want to be verbose and
descriptive, and you don’t have to look
up the meaning of flags everywhere.

Citation: GNU Coding Standards.

Only use one-letter flags for commonly
used flags, particularly at the top-level
when using subcommands. That way you
don’t “pollute” your namespace of short
flags, forcing you to use convoluted
letters and cases for flags you add in
the future.

Multiple arguments are fine for simple
actions against multiple files. For
example, rm file1.txt file2.txt
file3.txt . This also makes it work with
globbing: rm *.txt .

If you’ve got two or more arguments for
different things, you’re probably doing
something wrong. The exception is a
common, primary action, where the
brevity is worth memorizing. For

https://www.gnu.org/prep/standards/html_node/Command_002dLine-Interfaces.html

example, cp <source> <destination> .

Citation: 12 Factor CLI Apps.

Use standard names for flags, if there is
a standard. If another commonly used
command uses a flag name, it’s best to
follow that existing pattern. That way,
a user doesn’t have to remember two
different options (and which command it
applies to), and users can even guess an
option without having to look at the help
text.

Here’s a list of commonly used options:

-a , --all : All. For example, ps ,
fetchmail .
-d , --debug : Show debugging output.
-f , --force : Force. For example, rm
-f will force the removal of files,
even if it thinks it does not have
permission to do it. This is also
useful for commands which are doing
something destructive that usually
require user confirmation, but you
want to force it to do that
destructive action in a script.

https://medium.com/@jdxcode/12-factor-cli-apps-dd3c227a0e46

--json : Display JSON output. See the
output section.
-h , --help : Help. This should only
mean help. See the help section.
--no-input : See the interactivity
section.
-o , --output : Output file. For
example, sort , gcc .
-p , --port : Port. For example,
psql , ssh .
-q , --quiet : Quiet. Display less
output. This is particularly useful
when displaying output for humans
that you might want to hide when
running in a script.
-u , --user : User. For example, ps ,
ssh .
--version : Version.
-v : This can often mean either
verbose or version. You might want to
use -d for verbose and this for
version, or for nothing to avoid
confusion.

Make the default the right thing for
most users. Making things configurable
is good, but most users are not going to
find the right flag and remember to use

it all the time (or alias it). If it’s
not the default, you’re making the
experience worse for most of your users.

For example, ls has terse default output
to optimize for scripts and other
historical reasons, but if it were
designed today, it would probably default
to ls -lhF .

Prompt for user input. If a user doesn’t
pass an argument or flag, prompt for it.
(See also: Interactivity)

Never require a prompt. Always provide a
way of passing input with flags or
arguments. If stdin is not an
interactive terminal, skip prompting and
just require those flags/args.

Confirm before doing anything dangerous.
A common convention is to prompt for the
user to type y or yes if running
interactively, or requiring them to pass
-f or --force otherwise.

“Dangerous” is a subjective term, and

there are differing levels of danger:

Mild: A small, local change such as
deleting a file. You might want to
prompt for confirmation, you might
not. For example, if the user is
explicitly running a command called
something like “delete,” you probably
don’t need to ask.
Moderate: A bigger local change like
deleting a directory, a remote change
like deleting a resource of some
kind, or a complex bulk modification
that can’t be easily undone. You
usually want to prompt for
confirmation here. Consider giving
the user a way to “dry run” the
operation so they can see what’ll
happen before they commit to it.
Severe: Deleting something complex,
like an entire remote application or
server. You don’t just want to prompt
for confirmation here—you want to
make it hard to confirm by accident.
Consider asking them to type
something non-trivial such as the
name of the thing they’re deleting.
Let them alternatively pass a flag

such as --confirm="name-of-thing" , so
it’s still scriptable.

Consider whether there are non-obvious
ways to accidentally destroy things. For
example, imagine a situation where
changing a number in a configuration file
from 10 to 1 means that 9 things will be
implicitly deleted—this should be
considered a severe risk, and should be
difficult to do by accident.

If input or output is a file, support -
to read from stdin or write to stdout .
This lets the output of another command
be the input of your command and vice
versa, without using a temporary file.
For example, tar can extract files from
stdin :

If a flag can accept an optional value,
allow a special word like “none.” For

$ curl https://example.com/something.tar.gz | tar xvf -

example, ssh -F takes an optional
filename of an alternative ssh_config
file, and ssh -F none runs SSH with no
config file. Don’t just use a blank value
—this can make it ambiguous whether
arguments are flag values or arguments.

If possible, make arguments, flags and
subcommands order-independent. A lot of
CLIs, especially those with subcommands,
have unspoken rules on where you can put
various arguments. For example a
command might have a --foo flag that
only works if you put it before the
subcommand:

This can be very confusing for the user—
especially given that one of the most
common things users do when trying to

mycmd --foo=1 subcmd

works

$ mycmd subcmd --foo=1

unknown flag: --foo

get a command to work is to hit the up
arrow to get the last invocation, stick
another option on the end, and run it
again. If possible, try to make both
forms equivalent, although you might run
up against the limitations of your
argument parser.

Do not read secrets directly from flags.
When a command accepts a secret, eg. via
a --password argument, the argument
value will leak the secret into ps
output and potentially shell history.
And, this sort of flag encourages the use
of insecure environment variables for
secrets.

Consider accepting sensitive data only
via files, e.g. with a --password-file
argument, or via stdin . A --password-
file argument allows a secret to be
passed in discreetly, in a wide variety
of contexts.

(It’s possible to pass a file’s contents
into an argument in Bash by using --
password $(< password.txt) . This approach
has the same security issue of leaking

the file’s contents into the output of
ps . It’s best avoided.)

Only use prompts or interactive elements
if stdin is an interactive terminal (a
TTY). This is a pretty reliable way to
tell whether you’re piping data into a
command or whether it’s being run in a
script, in which case a prompt won’t
work and you should throw an error
telling the user what flag to pass.

If --no-input is passed, don’t prompt or
do anything interactive. This allows
users an explicit way to disable all
prompts in commands. If the command
requires input, fail and tell the user
how to pass the information as a flag.

InteractivityCLIG:

If you’re prompting for a password,
don’t print it as the user types. This is
done by turning off echo in the terminal.
Your language should have helpers for
this.

Let the user escape. Make it clear how
to get out. (Don’t do what vim does.) If
your program hangs on network I/O etc,
always make Ctrl-C still work. If it’s a
wrapper around program execution where
Ctrl-C can’t quit (SSH, tmux, telnet,
etc), make it clear how to do that. For
example, SSH allows escape sequences
with the ~ escape character.

If you’ve got a tool that’s sufficiently

SubcommandsCLIG:

complex, you can reduce its complexity
by making a set of subcommands. If you
have several tools that are very closely
related, you can make them easier to use
and discover by combining them into a
single command (for example, RCS vs.
Git).

They’re useful for sharing stuff—global
flags, help text, configuration, storage
mechanisms.

Be consistent across subcommands. Use
the same flag names for the same things,
have similar output formatting, etc.

Use consistent names for multiple levels
of subcommand. If a complex piece of
software has lots of objects and
operations that can be performed on those
objects, it is a common pattern to use
two levels of subcommand for this,
where one is a noun and one is a verb.
For example, docker container create . Be
consistent with the verbs you use across
different types of objects.

Either noun verb or verb noun ordering

works, but noun verb seems to be more
common.

Further reading: User experience, CLIs,
and breaking the world, by John Starich.

Don’t have ambiguous or similarly-named
commands. For example, having two
subcommands called “update” and
“upgrade” is quite confusing. You might
want to use different words, or
disambiguate with extra words.

Validate user input. Everywhere your
program accepts data from the user, it
will eventually be given bad data. Check
early and bail out before anything bad
happens, and make the errors

RobustnessCLIG:

https://uxdesign.cc/user-experience-clis-and-breaking-the-world-baed8709244f
https://uxdesign.cc/user-experience-clis-and-breaking-the-world-baed8709244f

understandable.

Responsive is more important than fast.
Print something to the user in <100ms.
If you’re making a network request,
print something before you do it so it
doesn’t hang and look broken.

Show progress if something takes a long
time. If your program displays no output
for a while, it will look broken. A good
spinner or progress indicator can make a
program appear to be faster than it is.

Ubuntu 20.04 has a nice progress bar that
sticks to the bottom of the terminal.

If the progress bar gets stuck in one
place for a long time, the user won’t
know if stuff is still happening or if
the program’s crashed. It’s good to show
estimated time remaining, or even just
have an animated component, to reassure
them that you’re still working on it.

There are many good libraries for
generating progress bars. For example,

tqdm for Python, schollz/progressbar for
Go, and node-progress for Node.js.

Do stuff in parallel where you can, but
be thoughtful about it. It’s already
difficult to report progress in the
shell; doing it for parallel processes is
ten times harder. Make sure it’s robust,
and that the output isn’t confusingly
interleaved. If you can use a library, do
so—this is code you don’t want to write
yourself. Libraries like tqdm for Python
and schollz/progressbar for Go support
multiple progress bars natively.

The upside is that it can be a huge
usability gain. For example, docker
pull ’s multiple progress bars offer
crucial insight into what’s going on.

$ docker image pull ruby

Using default tag: latest

latest: Pulling from library/ruby

6c33745f49b4: Pull complete

ef072fc32a84: Extracting [===

c0afb8e68e0b: Download complete

d599c07d28e6: Download complete

f2ecc74db11a: Downloading [=======================>

https://github.com/tqdm/tqdm
https://github.com/schollz/progressbar
https://github.com/visionmedia/node-progress
https://github.com/tqdm/tqdm
https://github.com/schollz/progressbar

One thing to be aware of: hiding logs
behind progress bars when things go well
makes it much easier for the user to
understand what’s going on, but if there
is an error, make sure you print out the
logs. Otherwise, it will be very hard to
debug.

Make things time out. Allow network
timeouts to be configured, and have a
reasonable default so it doesn’t hang
forever.

Make it recoverable. If the program
fails for some transient reason (e.g. the
internet connection went down), you
should be able to hit <up> and <enter>
and it should pick up from where it left
off.

Make it crash-only. This is the next step
up from idempotence. If you can avoid
needing to do any cleanup after

3568445c8bf2: Download complete

b0efebc74f25: Downloading [===>

9cb1ba6838a0: Download complete

operations, or you can defer that cleanup
to the next run, your program can exit
immediately on failure or interruption.
This makes it both more robust and more
responsive.

Citation: Crash-only software: More than
meets the eye.

People are going to misuse your program.
Be prepared for that. They will wrap it
in scripts, use it on bad internet
connections, run many instances of it at
once, and use it in environments you
haven’t tested in, with quirks you didn’t
anticipate. (Did you know macOS
filesystems are case-insensitive but also
case-preserving?)

Future-proofingCLIG:

https://lwn.net/Articles/191059/
https://lwn.net/Articles/191059/

In software of any kind, it’s crucial
that interfaces don’t change without a
lengthy and well-documented deprecation
process. Subcommands, arguments, flags,
configuration files, environment
variables: these are all interfaces, and
you’re committing to keeping them
working. (Semantic versioning can only
excuse so much change; if you’re putting
out a major version bump every month,
it’s meaningless.)

Keep changes additive where you can.
Rather than modify the behavior of a flag
in a backwards-incompatible way, maybe
you can add a new flag—as long as it
doesn’t bloat the interface too much.
(See also: Prefer flags to args.)

Warn before you make a non-additive
change. Eventually, you’ll find that you
can’t avoid breaking an interface. Before
you do, forewarn your users in the
program itself: when they pass the flag
you’re looking to deprecate, tell them
it’s going to change soon. Make sure
there’s a way they can modify their

https://semver.org/

usage today to make it future-proof, and
tell them how to do it.

If possible, you should detect when
they’ve changed their usage and not show
the warning any more: now they won’t
notice a thing when you finally roll out
the change.

Changing output for humans is usually OK.
The only way to make an interface easy
to use is to iterate on it, and if the
output is considered an interface, then
you can’t iterate on it. Encourage your
users to use --plain or --json in
scripts to keep output stable (see
Output).

Don’t have a catch-all subcommand. If
you have a subcommand that’s likely to
be the most-used one, you might be
tempted to let people omit it entirely
for brevity’s sake. For example, say you
have a run command that wraps an
arbitrary shell command:

You could make it so that if the first
argument to mycmd isn’t the name of an
existing subcommand, you assume the user
means run , so they can just type this:

This has a serious drawback, though: now
you can never add a subcommand named
echo—or anything at all—without risking
breaking existing usages. If there’s a
script out there that uses mycmd echo , it
will do something entirely different
after that user upgrades to the new
version of your tool.

Don’t allow arbitrary abbreviations of
subcommands. For example, say your
command has an install subcommand.
When you added it, you wanted to save

$ mycmd run echo "hello world"

$ mycmd echo "hello world"

users some typing, so you allowed them
to type any non-ambiguous prefix, like
mycmd ins , or even just mycmd i , and
have it be an alias for mycmd install .
Now you’re stuck: you can’t add any more
commands beginning with i , because
there are scripts out there that assume
i means install .

There’s nothing wrong with aliases—
saving on typing is good—but they should
be explicit and remain stable.

Don’t create a “time bomb.” Imagine it’s
20 years from now. Will your command
still run the same as it does today, or
will it stop working because some
external dependency on the internet has
changed or is no longer maintained? The
server most likely to not exist in 20
years is the one that you are maintaining
right now. (But don’t build in a blocking
call to Google Analytics either.)

If a user hits Ctrl-C (the INT signal),
exit as soon as possible. Say something
immediately, before you start clean-up.
Add a timeout to any clean-up code so it
can’t hang forever.

If a user hits Ctrl-C during clean-up
operations that might take a long time,
skip them. Tell the user what will
happen when they hit Ctrl-C again, in
case it is a destructive action.

For example, when quitting Docker
Compose, you can hit Ctrl-C a second
time to force your containers to stop
immediately instead of shutting them
down gracefully.

$ docker-compose up

…

^CGracefully stopping... (press Ctrl+C again to force)

Signals and control charactersCLIG:

Your program should expect to be started
in a situation where clean-up has not
been run. (See Crash-only software: More
than meets the eye.)

Command-line tools have lots of
different types of configuration, and
lots of different ways to supply it
(flags, environment variables, project-
level config files). The best way to
supply each piece of configuration
depends on a few factors, chief among
them specificity, stability and
complexity.

ConfigurationCLIG:

https://lwn.net/Articles/191059/
https://lwn.net/Articles/191059/

1.

2.

Configuration generally falls into a few
categories:

Likely to vary from one invocation of
the command to the next.

Examples:

Setting the level of debugging
output
Enabling a safe mode or dry run of
a program

Recommendation: Use flags.
Environment variables may or may not
be useful as well.

Generally stable from one invocation
to the next, but not always. Might
vary between projects. Definitely
varies between different users
working on the same project.

This type of configuration is often
specific to an individual computer.

Examples:

3.

Providing a non-default path to
items needed for a program to
start
Specifying how or whether color
should appear in output
Specifying an HTTP proxy server to
route all requests through

Recommendation: Use flags and
probably environment variables too.
Users may want to set the variables
in their shell profile so they apply
globally, or in .env for a particular
project.

If this configuration is sufficiently
complex, it may warrant a
configuration file of its own, but
environment variables are usually
good enough.

Stable within a project, for all
users.

This is the type of configuration that
belongs in version control. Files like
Makefile , package.json and docker-

compose.yml are all examples of this.

Recommendation: Use a command-
specific, version-controlled file.

Follow the XDG-spec. In 2010 the X
Desktop Group, now freedesktop.org,
developed a specification for the
location of base directories where config
files may be located. One goal was to
limit the proliferation of dotfiles in a
user’s home directory by supporting a
general-purpose ~/.config folder. The XDG
Base Directory Specification (full spec,
summary) is supported by yarn, fish,
wireshark, emacs, neovim, tmux, and
many other projects you know and love.

If you automatically modify
configuration that is not your program’s,
ask the user for consent and tell them
exactly what you’re doing. Prefer
creating a new config file (e.g.
/etc/cron.d/myapp) rather than appending
to an existing config file (e.g.
/etc/crontab). If you have to append or
modify to a system-wide config file, use
a dated comment in that file to

https://freedesktop.org/
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://wiki.archlinux.org/index.php/XDG_Base_Directory#Specification

delineate your additions.

Apply configuration parameters in order
of precedence. Here is the precedence for
config parameters, from highest to
lowest:

Flags
The running shell’s environment
variables
Project-level configuration (eg.
.env)
User-level configuration
System wide configuration

Environment variables are for behavior
that varies with the context in which a
command is run. The “environment” of an

Environment variablesCLIG:

environment variable is the terminal
session—the context in which the
command is running. So, an env var might
change each time a command runs, or
between terminal sessions on one
machine, or between instantiations of
one project across several machines.

Environment variables may duplicate the
functionality of flags or configuration
parameters, or they may be distinct from
those things. See Configuration for a
breakdown of common types of
configuration and recommendations on
when environment variables are most
appropriate.

For maximum portability, environment
variable names must only contain
uppercase letters, numbers, and
underscores (and mustn’t start with a
number). Which means O_O and OWO are
the only emoticons that are also valid
environment variable names.

Aim for single-line environment variable
values. While multi-line values are
possible, they create usability issues

with the env command.

Avoid commandeering widely used names.
Here’s a list of POSIX standard env vars.

Check general-purpose environment
variables for configuration values when
possible:

NO_COLOR , to disable color (see
Output) or FORCE_COLOR to enable it
and ignore the detection logic
DEBUG , to enable more verbose output
EDITOR , if you need to prompt the
user to edit a file or input more
than a single line
HTTP_PROXY , HTTPS_PROXY , ALL_PROXY
and NO_PROXY , if you’re going to
perform network operations (The HTTP
library you’re using might already
check for these.)
SHELL , if you need to open up an
interactive session of the user’s
preferred shell (If you need to
execute a shell script, use a specific
interpreter like /bin/sh)
TERM , TERMINFO and TERMCAP , if
you’re going to use terminal-specific

https://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap08.html

escape sequences
TMPDIR , if you’re going to create
temporary files
HOME , for locating configuration
files
PAGER , if you want to automatically
page output
LINES and COLUMNS , for output that’s
dependent on screen size (e.g. tables)

Read environment variables from .env
where appropriate. If a command defines
environment variables that are unlikely
to change as long as the user is working
in a particular directory, then it should
also read them from a local .env file so
users can configure it differently for
different projects without having to
specify them every time. Many languages
have libraries for reading .env files
(Rust, Node, Ruby).

Don’t use .env as a substitute for a
proper configuration file. .env files
have a lot of limitations:

A .env file is not commonly stored
in source control

https://crates.io/crates/dotenv
https://www.npmjs.com/package/dotenv
https://github.com/bkeepers/dotenv

(Therefore, any configuration stored
in it has no history)
It has only one data type: string
It lends itself to being poorly
organized
It makes encoding issues easy to
introduce
It often contains sensitive
credentials & key material that would
be better stored more securely

If it seems like these limitations will
hamper usability or security, then a
dedicated config file might be more
appropriate.

Do not read secrets from environment
variables. While environment variables
may be convenient for storing secrets,
they have proven too prone to leakage:

Exported environment variables are
sent to every process, and from there
can easily leak into logs or be
exfiltrated
Shell substitutions like curl -H
"Authorization: Bearer $BEARER_TOKEN"
will leak into globally-readable

process state. (cURL offers the -H
@filename alternative for reading
sensitive headers from a file.)
Docker container environment
variables can be viewed by anyone
with Docker daemon access via docker
inspect
Environment variables in systemd
units are globally readable via
systemctl show

Secrets should only be accepted via
credential files, pipes, AF_UNIX sockets,
secret management services, or another
IPC mechanism.

“Note the obsessive use of abbreviations

NamingCLIG:

and avoidance of capital letters; [Unix]
is a system invented by people to whom
repetitive stress disorder is what black
lung is to miners. Long names get worn
down to three-letter nubbins, like stones
smoothed by a river.” — Neal Stephenson,
In the Beginning was the Command Line

The name of your program is particularly
important on the CLI: your users will be
typing it all the time, and it needs to
be easy to remember and type.

Make it a simple, memorable word. But
not too generic, or you’ll step on the
toes of other commands and confuse
users. For example, both ImageMagick and
Windows used the command convert .

Use only lowercase letters, and dashes if
you really need to. curl is a good name,
DownloadURL is not.

Keep it short. Users will be typing it
all the time. Don’t make it too short:
the very shortest commands are best
reserved for the common utilities used
all the time, such as cd , ls , ps .

https://web.stanford.edu/class/cs81n/command.txt

Make it easy to type. If you expect
people to type your command name all
day, make it easy on their hands.

A real-world example: long before Docker
Compose was docker compose , it was
plum . This turned out to be such an
awkward, one-handed hopscotch that it
was immediately renamed to fig , which
– as well as being shorter – flows much
more easily.

Further reading: The Poetics of CLI
Command Names

If possible, distribute as a single
binary. If your language doesn’t compile

DistributionCLIG:

https://smallstep.com/blog/the-poetics-of-cli-command-names/
https://smallstep.com/blog/the-poetics-of-cli-command-names/

to binary executables as standard, see if
it has something like PyInstaller. If you
really can’t distribute as a single
binary, use the platform’s native package
installer so you aren’t scattering things
on disk that can’t easily be removed.
Tread lightly on the user’s computer.

If you’re making a language-specific
tool, such as a code linter, then this
rule doesn’t apply—it’s safe to assume
the user has an interpreter for that
language installed on their computer.

Make it easy to uninstall. If it needs
instructions, put them at the bottom of
the install instructions—one of the most
common times people want to uninstall
software is right after installing it.

https://www.pyinstaller.org/

Usage metrics can be helpful to
understand how users are using your
program, how to make it better, and
where to focus effort. But, unlike
websites, users of the command-line
expect to be in control of their
environment, and it is surprising when
programs do things in the background
without telling them.

Do not phone home usage or crash data
without consent. Users will find out,
and they will be angry. Be very explicit
about what you collect, why you collect
it, how anonymous it is and how you go
about anonymizing it, and how long you
retain it for.

Ideally, ask users whether they want to
contribute data (“opt-in”). If you choose
to do it by default (“opt-out”), then
clearly tell users about it on your
website or first run, and make it easy
to disable.

Examples of projects that collect usage

AnalyticsCLIG:

statistics:

Angular.js collects detailed analytics
using Google Analytics, in the name
of feature prioritization. You have to
explicitly opt in. You can change the
tracking ID to point to your own
Google Analytics property if you want
to track Angular usage inside your
organization.
Homebrew sends metrics to Google
Analytics and has a nice FAQ detailing
their practices.
Next.js collects anonymized usage
statistics and is enabled by default.

Consider alternatives to collecting
analytics.

Instrument your web docs. If you
want to know how people are using
your CLI tool, make a set of docs
around the use cases you’d like to
understand best, and see how they
perform over time. Look at what
people search for within your docs.
Instrument your downloads. This can
be a rough metric to understand usage

https://angular.io/analytics
https://angular.io/analytics
https://docs.brew.sh/Analytics
https://nextjs.org/telemetry
https://nextjs.org/telemetry

and what operating systems your users
are running.
Talk to your users. Reach out and ask
people how they’re using your tool.
Encourage feedback and feature
requests in your docs and repos, and
try to draw out more context from
those who submit feedback.

Further reading: Open Source Metrics

Further readingCLIG:

https://opensource.guide/metrics/

The Unix Programming Environment,
Brian W. Kernighan and Rob Pike
POSIX Utility Conventions
Program Behavior for All Programs,
GNU Coding Standards
12 Factor CLI Apps, Jeff Dickey
CLI Style Guide, Heroku

https://en.wikipedia.org/wiki/The_Unix_Programming_Environment
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
https://www.gnu.org/prep/standards/html_node/Program-Behavior.html
https://medium.com/@jdxcode/12-factor-cli-apps-dd3c227a0e46
https://devcenter.heroku.com/articles/cli-style-guide

